9 research outputs found

    Mobility management architecture in different RATs based network slicing

    Get PDF
    © 2018 IEEE. Network slicing is an architectural solution that enables the future 5G network to offer a high data traffic capacity and efficient network connectivity. Moreover, software defined network (SDN) and network functions virtualization (NFV) empower this architecture to visualize the physical network resources. The network slicing identified as a multiple logical network, where each network slice dedicates as an end-to-end network and works independently with other slices on a common physical network resources. Most user devices have more than one smart wireless interfaces to connect to different radio access technologies (RATs) such as WiFi and LTE, thereby network operators utilize this facility to offload mobile data traffic. Therefore, it is important to enable a network slicing to manage different RATs on the same logical network as a way to mitigate the spectrum scarcity problem and enables a slice to control its users mobility across different access networks. In this paper, we propose a mobility management architecture based network slicing where each slice manages its users across heterogeneous radio access technologies such as WiFi, LTE and 5G networks. In this architecture, each slice has a different mobility demands and these demands are governed by a network slice configuration and service characteristics. Therefore, our mobility management architecture follows a modular approach where each slice has individual module to handle the mobility demands and enforce the slice policy for mobility management. The advantages of applying our proposed architecture include: i) Sharing network resources between different network slices; ii) creating logical platform to unify different RATs resources and allowing all slices to share them; iii) satisfying slice mobility demands

    Deep Sensing: Inertial and Ambient Sensing for Activity Context Recognition using Deep Convolutional Neural Networks

    Get PDF
    With the widespread use of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications, such as those for remote health and lifestyle monitoring, intelligent personalized services, etc. However, activity context recognition based on multivariate time series signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance class problems. This means that recognition models tend to predict classes with the majority number of samples whilst ignoring classes with the least number of samples, resulting in poor generalization. To address this problem, we propose augmentation of the time series signals from inertial sensors with signals from ambient sensing to train deep convolutional neural network (DCNNs) models. DCNNs provide the characteristics that capture local dependency and scale invariance of these combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor signals and then developed another model that combined signals from both inertial and ambient sensors aiming to investigate the class imbalance problem by improving the performance of the recognition model. Evaluation and analysis of the proposed system using data with imbalanced classes show that the system achieved better recognition accuracy when data from inertial sensors are combined with those from ambient sensors, such as environmental noise level and illumination, with an overall improvement of 5.3% accuracy

    Mobility Management Architecture in Different RATs Based Network Slicing

    Get PDF
    Network slicing is an architectural solution that enables the future 5G network to offer a high data traffic capacity and efficient network connectivity. Moreover, software defined network (SDN) and network functions virtualization (NFV) empower this architecture to visualize the physical network resources. The network slicing identified as a multiple logical network, where each network slice dedicates as an end-to-end network and works independently with other slices on common physical network resources. Most user devices have more than one smart wireless interfaces to connect to different radio access technologies (RATs) such as WiFi and LTE, thereby network operators utilize this facility to offload mobile data traffic. Therefore, it is important to enable a network slicing to manage different RATs on the same logical network as a way to mitigate the spectrum scarcity problem and enables a slice to control its user’s mobility across different access networks. In this paper, we propose a mobility management architecture based network slicing where each slice manages its users across heterogeneous radio access technologies such as WiFi, LTE and 5G networks. In this architecture, each slice has a different mobility demands and these demands are governed by a network slice configuration and service characteristics. Therefore, our mobility management architecture follows a modular approach where each slice has individual module to handle the mobility demands and enforce the slice policy for mobility management. The advantages of applying our proposed architecture include: i) Sharing network resources between different network slices; ii) creating logical platform to unify different RATs resources and allowing all slices to share them; iii) satisfying slice mobility demands

    Driving Active Contours to Concave Regions

    Get PDF
    Broken characters restoration represents the major challenge of optical character recognition (OCR). Active contours, which have been used successfully to restore ancient documents with high degradations have drawback in restoring characters with deep concavity boundaries. Deep concavity problem represents the main obstacle, which has prevented Gradient Vector Flow active contour in converge to objects with complex concavity boundaries. In this paper, we proposed a technique to enhance (GVF) active contour using particle swarm optimization (PSO) through directing snake points (snaxels) toward correct positions into deep concavity boundaries of broken characters by comparing with genetic algorithms as an optimization method. Our experimental results showed that particle swarm optimization outperform on genetic algorithm to correct capturing the converged areas and save spent time in optimization process

    Context-aware personalization using neighborhood-based context similarity

    Get PDF
    With the overwhelming volume of online multimedia content and increasing ubiquity of Internet-enabled mobile devices, pervasive use of the Web for content sharing and consumption has become our everyday routines. Consequently, people seeking online access to content of interest are becoming more and more frustrated. Thus, deciding which content to consume among the deluge of available alternatives becomes increasingly difficult. Context-aware personalization, having the capability to predict user’s contextual preferences, has been proposed as an effective solution. However, some existing personalized systems, especially those based on collaborative filtering, rely on rating information explicitly obtained from users in consumption contexts. Therefore, these systems suffer from the so-called cold-start problem that occurs as a result of personalization systems’ lack of adequate knowledge of either a new user’s preferences or of a new item rating information. This happens because these new items and users have not received or provided adequate rating information respectively. In this paper, we present an analysis and design of a context-aware personalized system capable of minimizing new user cold-start problem in a mobile multimedia consumption scenario. The article emphasizes the importance of similarity between contexts of consumption based on the traditional k-nearest neighbor algorithm using Pearson Correlation model. Experimental validation, with respect to quality of personalized recommendations and user satisfaction in both contextual and non-contextual scenarios, shows that the proposed system can mitigate the effect of user-based cold-start problem

    Context-aware media recommendations for smart devices

    No full text
    © 2014, Springer-Verlag Berlin Heidelberg. The emergence of pervasive computing, the rapid advancements in broadband and mobile networks and the incredible appeals of smart devices are driving unprecedented universal access and delivery of online-based media resources. As more and more media services continue to flood the Web, mobile users will continue to waste invaluable time, seeking content of their interest. To deliver relevant media items offering richer experiences to mobile users, media services must be equipped with contextual knowledge of the consumption environment as well as contextual preferences of the users. This article investigates context-aware recommendation techniques for implicit delivery of contextually relevant online media items. The proposed recommendation services work with a contextual user profile and a context recognition framework, using case base reasoning as a methodology to determine user’s current contextual preferences, relying on a context recognition service, which identifies user’s dynamic contextual situation from device’s built-in sensors. To evaluate the proposed solution, we developed a case-study context-aware application that provides personalized recommendations adapted to user’s current context, namely the activity he/she performs and consumption environment constraints. Experimental evaluations, via the case study application, real-world user data, and online-based movie metadata, demonstrate that context-aware recommendation techniques can provide better efficacy than the traditional approaches. Additionally, evaluations of the underlying context recognition process show that its power consumption is within an acceptable range. The recommendations provided by the case study application were assessed as effective via a user study, which demonstrates that users are pleased with the contextual media recommendations
    corecore